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Foreword 
 
The Australian deer farming industry is well supported with information on the nutrient 
requirements of farmed deer, but it is difficult to continuously monitor the animals’ nutritional 
environment, so as to optimise the performance of deer herds.  Farmers need timely 
information on the nutritional status of their animals and the nutritive value of pastures and 
supplementary feeds if they are to apply successfully this existing nutritional information.   
 
This report reviews the use of near infrared reflectance (NIR) spectroscopy to monitor the 
nutritive value of animal foods and the nutritional status of grazing animals.  NIR has been 
used over the last forty years to analyse rapidly animal concentrate and forage foods.  Food 
nutrient content can be predicted accurately with NIR spectroscopy.  NIR methods have been 
shown to predict in vivo digestibility at least as well as conventional” wet chemistry” 
methods, and much more rapidly.  NIR technology has been applied to the routine monitoring 
(through analysis of faecal samples) of the nutritional status of cattle, deer and other grazing 
animals, and appears to have potential for identifying pregnancy, gender and animal species. 
 
NIR spectral information must be calibrated against a reference data set of adequate size and 
range if robust NIR calibrations are to be obtained.  Once this has been done, the evidence 
from the application of NIR technology to faecal profiling of cattle (i.e. the continuous 
monitoring of grazing animals’ nutritional status) which is presently available in the USA and 
which is being developed in northern Australia, suggests that a similar technology could be 
developed to monitor the nutritional status of deer herds and predict the performance of 
farmed deer.   
 
This project was funded from industry revenue which is matched by funds provided by the 
Federal Government.  
 
This report, a new addition to RIRDC’s diverse range of over 900 research publications, 
forms part of our Deer R&D program, which aims to foster an Australian deer industry as a 
profitable and efficient mainstream agricultural enterprise.  
 
Most of our publications are available for viewing, downloading or purchasing online through 
our website: 
 
 downloads at www.rirdc.gov.au/reports/Index.htm  

 purchases at www.rirdc.gov.au/eshop 

 
 
Simon Hearn 
Managing Director 
Rural Industries Research and Development Corporation 
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Executive Summary  
 
Near infrared reflectance (NIR) spectroscopy has been used over the last forty years to 
analyse accurately protein, fibre, and other organic components in animal foods.  NIR 
spectroscopy is a rapid, non-destructive, and non-polluting technology. 
 
NIR information can not be used to determine analyte concentrations directly because of the 
way in which near infrared radiation passes into, through, and is reflected from, the sample.  
We have to predict the concentrations of the constituent we wish to measure from 
relationships which have been developed between reflectance and reference data, i.e. we have 
to use prediction equations.  Robust prediction equations are based on calibration data sets 
which encompass the range of sample characteristics which we expect to encounter when the 
equation is used.  It is also important to apply appropriate mathematical techniques (e.g. 
smoothing and derivatisation) to the NIR data, and to make sure that the samples which we 
analyse are uniform in particle size and water content.  
 
 “Universal” equations have been developed to predict the nutrient composition of a wide 
range of foods of that type.  There are several examples of European universal equations for 
grains and forages, and an equation for Australian mixed temperate pasture.  It may be 
necessary to calculate “local corrections” before universal equations are used in any new 
context. 
 
When properly calibrated, NIR spectroscopy predicts protein contents with great accuracy. 
We can predict other constituents less precisely, although with precisions which are similar to 
those of conventional laboratory determinations.  NIR spectroscopy is used successfully with 
both concentrate and forage foods. NIR information is obtained from the interactions of near 
infrared radiation with chemical bonds between non-mineral elements and so does not always 
accurately predict food mineral contents.  NIR methods predict in vitro digestibility accurately 
and precisely, and can predict in vivo digestibility at least as well as conventional “wet 
chemistry” methods such as in vitro digestion or the pepsin-cellulase method, and much more 
rapidly.  The DM intake of animals can also be predicted, although with less precision than 
chemical composition or digestibility.  
 
Faecal indices, i.e. the concentrations of certain constituents in faeces, have been used to 
monitor the nutritional status of grazing animals, including wild deer.  Faecal indices 
determined by wet chemistry have given mixed success, but substantially better results have 
been obtained with NIR spectroscopy.  NIR spectroscopy may measure characteristics of 
faeces which integrate several different aspects of faecal chemistry, while wet chemical 
analyses focus on single entities. 
. 
NIR technology has been used to routinely monitor (through analysis of faecal samples) the 
nutritional status of cattle, and appears to have potential for identifying tick infestation, 
pregnancy, gender and animal species.   Nutritional status data obtained by NIR analysis of 
grazing cattle faeces is used as an input to the NUTBAL Pro expert system for North 
American ranchers.  The combination of NIR analysis and nutritional profiling with the 
NUTBAL Pro program has improved yearly economic returns to American cattle ranchers by 
up to USD26.50 per cow mated.  These results, the preliminary evidence from similar 
attempts in northern Australia, and preliminary results of a NIR-based nutritional profiling 
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program for deer in Texas, suggest that a similar technology could be developed to monitor 
the nutritional status of deer herds and predict the performance of farmed deer. 
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1. Introduction 
 
Near infrared reflectance (NIR) spectroscopy is a long-established, and now mature, 
technology.  Norris and his colleagues developed the first application of NIR spectroscopy to 
measure water in grains and seeds (Norris and Hart 1965, cited in Givens, et al 1997).  The 
technology uses simple sample preparation methods (drying and grinding), is very rapid (once 
the sample has been prepared, measurements are made in seconds), and inexpensive.  As 
noted by Mark, et al (2002) it avoids the problems of organic and other chemical waste 
disposal, and there are few if any hazards associated with the technique because it uses no 
toxic or corrosive reagents. 
 
NIR spectroscopy has been used in a remarkably wide range of analytical situations.  NIR 
methods were first developed for the rapid analysis of water, oil, and protein in grains and 
seeds.  More recently, NIR spectroscopy has been used to identify waxy wheat (Delwiche and 
Graybosch 2002), authenticate the origin of meat (Fumiere, et al 2000), assess chemical 
pulping traits in wood (Greaves, et al 1996), asses the sugar content of fruit (Walsh, et al 
2000), and predict the nutrients in Eucalyptus leaves and the feeding rate of greater gliders 
and ringtail possums (McIlwee, et al 2001).  The potentials for NIR techniques in ecology and 
agriculture have been reviewed by Foley, et al (1998) and Givens and Deauville (1999).  NIR 
methods are becoming widely used in animal science to predict the chemical composition of 
forages and other foods, food digestibility, and animal responses to foods including food 
intake and growth (e.g. Coates 2000; Stuth and Tolleson 2000), and to identify animal 
species, gender, and pregnancy (Tolleson and Stuth 2002). 
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2. Elements of near infrared reflectance 
spectroscopy 
 
The theory of NIR spectroscopy has been described by several authors, e.g. Hruschka (1987) 
and Givens, et al (1997).  A short review of the basic elements of NIR spectroscopy is given 
in this section. 

2.1. Measurement of the absorbance of radiation by a sample. 
 
The Beer-Lambert law describes the relationship between the concentration of a solute and 
the amount of light absorbed by the solution: 
 

Cx  =   Ax / e.l 
 
where: Cx = concentration of the test solute 
 Ax = absorbance of the test solution 
 e = molar absorptivity of the test solute 
 l = path length travelled by the light through the solution 
 
The important feature of this relationship is that it allows the measurement of Cx directly from 
Ax.   
 
When infrared radiation is incident on a solid sample, some of it is reflected (specular 
reflectance) from the surface of the sample.   Another proportion of the radiation enters the 
sample (by about 2 mm, Hruschka 1987) and may be absorbed within it. Radiation which is 
not absorbed may be transmitted through the sample or reflected from it (diffuse reflectance, 
Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 

 
While the Beer-Lambert law generally describes the relationship between radiation diffusely 
reflected from a solid sample and characteristics of that sample, the path length of diffusely 
reflected radiation can not be predicted because it is scattered by random reflections, 
refractions and diffractions within the sample.  The variations within NIR diffuse reflectance 
spectra are mainly a result of (1) non-specific scatter of radiation, (2) variable path length, and 
(3) the chemical composition of the sample (Barnes, et al 1989).  

Fig. 1.  Diagrammatic representation of specular (a) and diffuse (b) reflectances,  and 
absorption (c) of near infrared radiation from a sample (from Givens, et al 1997). 

(a) (b)

incident radiation 

(c)
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As a result, the relationship between reflectance and analyte content can not be described by 
any mathematical relationship (Givens, et al 1997). Thus while the characteristics of near 
infrared radiation reflected from a sample can be used to predict certain sample 
characteristics, each application of this type must be obtained by calibration.  This introduces 
a number of complications such as the choice of wavelength, mathematical treatment of the 
reflectance data, methods of sample preparation and the effects of instrumentation differences. 
 
The amount of radiation reflected from the sample is quantified as the reflectance (R) of the 
sample.  The value is usually expressed as log(1/R), which gives higher values at higher levels 
of absorbance (i.e. lower reflectance).  There is an almost linear relationship between log(1/R) 
and the concentration of an absorbing component (Hruschka 1987).  The log(1/R) curve is 
comparable to an absorption curve with peak values occurring at wavelengths which 
correspond to absorption bands in the sample (Norris, et al 1976). 

2.2. Choice of wavelengths. 
 
The near infrared spectrum is between 730 and 2600 nm.  Reflectance spectroscopy uses 
wavelengths between 1000 and 2600 nm (Hruschka 1987), although the extremes of this 
range are not often used (Williams 1987 and Table 1).  This region of the infrared spectrum 
gives results which have a signal : noise ration of about 10,000 : 1 and are attenuated enough 
so that samples do not have to be diluted and possible non-linearity caused by strong 
absorbances is less likely (Givens, et al 1997).   
 
Table 1.  Wavelengths commonly used in the application of NIR spectroscopy to animal 
nutrition. 
 
Sample type / analyte Wavelength (nm) Author 
Grass / ME content 1658 - 1668 see references in Givens, et al 

(1997) 
Forages / protein  2100 - 2164 see references in Williams (1987) 
Forage / fibre, IVDMD a,b 1555 - 1674, 2294 see references in Williams (1987) 
Grass / fibre b 1416 - 2400 Garcia-Cuidad, et al (1993) 
Grass / protein 1536 - 2236 Garcia-Cuidad, et al (1993) 
Grass / cellulose 1320 - 2044 Garcia-Cuidad, et al (1993) 
Whole-plant maize / 
IVDMD 

1722 - 2336 Valdes, et al (1987) 

Whole-plant maize / protein 1680 - 2336 Valdes, et al (1987) 
a acid detergent fibre, neutral detergent fibre 
b in vitro dry matter digestibility 
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Table 2.  Near infrared wavelengths and their association with chemical structures 
(from Barnes 1988; Osborne and Fearn 1986; Smith and Kelman 1997). 
 

Wavelength (nm) Chemical entity 
1143 aromatic compounds, lignin 
1496, 1668, 1976 amide bonds 
1660 - 1670, 1720 - 1730, 2100 - 2200 condensed tannins 
1772  ester bonds 
1930 water 
1960, 2180 protein 
2140, 2180 peptide bonds 
2088, 2410 - 2460 cellulose  
2380 hemicellulose 
2461 starch 

 
Reflectance in the near infrared spectrum represents the chemical structure of the sample.  In 
particular it indicates the presence of chemical bonds and functional groups (e.g. C-H, O-H, 
N-H; Table 2).  Peaks in the log(1/R) spectrum represent the harmonics, overtones and 
combinations which arise from the primary absorption in the mid infrared spectrum (Coleman 
and Murray 1993). Purnomoadi, et al (1996) have discussed the relationships between 
wavelengths and the constituents of OM.  However, although the reflectance of near infrared 
radiation is related to the sample’s organic chemistry there are no necessary chemical or 
physical relationships between the analyte under consideration and the wavelength(s) which 
may be selected to predict it.  Examples of this can be seen in Table 1 and Villalobos, et al 
(1991) and Purnomoadi, et al (1996).  
 
There are instances of different authors working in different laboratories and with different 
samples selecting the same wavelength for a particular analyte (e.g. Valdes, et al 1987).  
Nevertheless, in every particular situation the optimal wavelength combinations may change 
between laboratories and sample types, and even between years when similar samples are 
analysed (e.g. Valdes, et al 1990).  An important consideration is that the chosen set of 
wavelengths should optimise the contrast between the benefits of using wavelengths at which 
absorption by the analyte under consideration is maximised v. the benefits of minimising 
interference at the chosen wavelengths by other sample constituents. 

2.3. Mathematical treatment of the reflectance data. 
 
NIR spectral variations related to different analytes are small (Hruschka 1987; Barnes 1988) 
and reflectance spectra are characterised by noise (random errors caused by instrument 
function), the effects of sample preparation (especially water content and particle size), and 
overlaps between the reflectance peaks of different constituents.  There is usually a baseline 
variation such that log(1/R) values are greater at wavelengths approaching 2500 nm, and this 
effect can be curvilinear with densely-packed samples (Barnes, et al 1989).  Further, 
reflectances at different wavelengths may be highly correlated (Barnes, et al 1989).  This 
collinearity is acceptable when it occurs at chemically-related wavelengths, but should be 
corrected for if it occurs at unrelated wavelengths. 
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Noise (i.e. random variation in the signal caused by equipment or other variations) can be 
reduced by smoothing.  In moving average smoothing each reflectance value is replaced by 
the mean of a predetermined number of values on each side of it.  Data can also be smoothed 
by averaging multiple (40 to 120) readings made at each wavelength (Williams and Cordeiro 
1985; Williams 1987).  The Savitsky-Golay and Fourier transform methods of smoothing are 
described by Hruschka (1987).  Baker, et al (1994) used the “noise file” approach 
recommended by Westerhaus (1991) to control random error over the course of several 
months work.  The “noise file” was developed by repeatedly re-sampling a standard sample 
which had been exposed to the changing environmental conditions in the laboratory.  
“Scatter” in log(1/R) data can also be corrected with the Geladi, et al (1985) multiple scatter 
correction.  
 
Variations in sample water content are important because water absorbs near infrared 
radiation strongly (e.g. Fig. 1 in Baker, et al 1994).  Additionally, variations in sample particle 
size and temperature influence the scattering of radiation as it passes through the sample 
(Givens, et al 1997).  Large particles do not scatter infrared radiation as much as small 
particles (Hruschka 1987).  More radiation is absorbed, giving higher log(1/R) values, and 
this effect is greater at those wavelengths which are absorbed more strongly.  Robert, et al 
(1986) suggested that correction for variations in particle size are particularly important when 
principal components analysis is used, and devised a regression approach to correct for this.  
The correction involves calculating the mean values for log(1/R) at each wavelength in the 
calibration data set, then regressing individual log(1/R) values for each sample against these 
“reference” values, and using the deviations from the predicted value in the principal 
components analysis. 
 
Effects of different particle sizes and water contents between samples on the log(1/R) values 
can also be controlled by the “standard normal variate” method of Barnes, et al (1985) such 
that: 
 

SNVi  =  (Yi  − Y) / [Σ(Yi  −  Y)2 / (N − 1)]0.5 
 
where: SNVi  = standard normal variate for the value of log(1/R) at the ith wavelength 
 Yi = value of log(1/R) at the ith wavelength 
 Y = mean of all Y 
 N = number of log(1/R) values 
 
Overlapping of the raw reflectance spectra (log(1/R)) of different analytes can be addressed 
by calculating derivatives, i.e. by subtracting from the value for log(1/R) obtained at a 
particular wavelength the values obtained at second (and third, in the case of the second 
derivative) wavelengths usually 20 nm distant (Williams and Cordeiro (1985): 
 

A'  =  (2 × A)  –  B  –  C 
or   A'  =  A – (2 × B) + C 

 
where: A' = second derivative of A 

A, B, C = log(1/R) obtained at wavelengths a, b and c 
 

Hruschka (1987) has given a detailed description of the effects of derivatisation.  The effect of 
using a second derivative to resolve overlapping peaks is illustrated in Fig. 2.  Choice of 
derivative may depend on the analyte and matrix under consideration.  Norris, et al (1976) 
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developed good prediction equations (coefficient of determination, R2 = 0.85 to 0.99) for 
protein, fibre, digestibility and intake from second derivative data.  Shenk, et al (1981) 
recommended log(1/R) for protein and in vitro digestibility, and second derivatives for fibre 
and minerals. Shenk and Westerhaus (1991b) later concluded that first derivatives gave better 
results for protein and second derivatives for acid detergent fibre (ADF) when hays, haylages 
and grains were examined.  Marten, et al (1984) recommended second derivatives for all 
forage constituents.  Garcia-Cuidad, et al (1993) compared log(1/R), and the first and second 
derivatives of these, in the development of equations to predict protein, fibre, lignin and 
cellulose of grasses.  They reported generally similar R2 but concluded that the second 
derivative usually gave better fits.   Equations developed by Brown, et al (1990) to predict 
protein and neutral detergent fibre (NDF) contents and in vitro OM digestibility (IVOMD) of 
grass hays used the first and second derivatives in almost every case.  However, the preferred 
mathematical treatment varied between hays for each analyte.   
 
Collinearity is also reduced by the SNV correction.  Table 3 reports data from Barnes, et al 
(1985). These show that the SNV correction removes collinearity between chemically 
unrelated wavelengths while retaining it between related wavelengths.  The second derivative 
also reduced collinearity but to a less extent.  Other advantages of the SNV correction in 
relation to principal component analysis are described by Barnes, et al (1985).   
 
Barnes, et al (1985) suggested a method of using a second-degree polynomial to remove the 
tendency for the log (1/R) baseline to increase over the range of wavelengths used in food 
evaluation.  De-trending is now commonly used.  Shenk and Westerhaus (1991b) reported 
that de-trending reduced the standard error of performance (SEP) for predictions of protein 
and ADF in forages and grains in more than half the cases. 
 
Table 3.  Collinearity between reflectances at chemically-related and unrelated 
wavelengths before and after the SNV correction. 
 

Mathematical treatment Straw R2 Hay R2 
Chemically unrelated wavelengths (1700 and 2100 nm): 
Log(1/R) 0.937 0.965 
D2 log(1/R) 1 0.371 0.059 
SNV 0.010 0.029 
   
Chemically related wavelengths (1420 and 1932 nm): 
Log(1/R) 0.945 0.890 
D2 log(1/R) 0.759 0.593 
SNV 0.878 0.568 

1 D2 = second derivative 
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Fig. 2.  (A) Reflectance spectra showing (a) and (b) overlapping spectra of two 
different analytes, and (c) the combined spectrum.  (B) Second derivative of 
log(1/R) showing separation of peaks (after Hruschka 1987). 

(a)

(b)



 
 

8 

3. Calibration and Validation 
3.1. Characteristics of the calibration data set. 
 
Equations are developed from a calibration data set, i.e. values for the analyte under 
consideration which have been generated by some reference method.  Calibration data sets 
should be obtained from material which encompasses all of the chemical and spectral 
variation (Williams 1987) and the physico-chemical characteristics that are likely to be found 
in the population to be analysed using the calibrations (Williams and Cordiero 1985).  This 
avoids any need to extrapolate beyond the boundaries of the calibration data.  Calibration sets 
should have a wide range and even distribution in composition (Valdes, et al 1990).   
 
Construction of a calibration set involves the balancing the cost of obtaining a widely 
representative data base, against the desirability of having the calibration set contain 
representatives of all the samples that are likely to be analysed by the prediction equation.  
Several authors have commented that the removal of outliers from the calibration set 
improves (as would be expected) the goodness of fit of the resulting calibration equation. 
Shenk and Westerhaus (1991a) recommended that the calibration set should exclude samples 
with extreme (i.e. outliers) or very similar, spectra (they used Mahalanobis distances of >3.0 
and <0.6 to define the samples included in the set).  They suggested that this would help to 
reduce the cost of obtaining reference values. On the other hand, Lyons and Stuth (1992) 
suggest that outliers which are identified when the equations are used should be referred back 
to the calibration set to identify those sample types that should be better represented in the 
calibration.  Smith, et al (1997) comment as follows: “We conclude that outlier samples 
should not be removed during the calibration process unless the sample was identified as an 
outlier through the detection of some extraneous factor …. These outlier samples have been 
shown to provide essential information when the regression was used to analyse other similar 
samples.”  
 
The optimum size for calibration data sets has not been resolved.  Williams (1987) suggests 
35 to 40 for “simple” calibrations, while J. Stuth (personal communication) recommends no 
less than 100 in the development of equations to predict animal performance from faecal data.  
Several hundreds of samples are generally used in forage calibration sets (Aastveit and 
Marum (1993), and they recommended 50 samples for principal component regression 
analysis.  Hruschka (1987) recommends, on the basis of experience, that at least 10 samples 
are required for each different constant and for each varied parameter in the regression 
equation.  Examples of calibration data sets are given in Table 4. 
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Table 4.  Calibration data sets used in the application of NIR spectroscopy to animal 
nutrition. 
 
Purpose n Characteristics Authors 
IVDMD of 
lucerne 

166 Different cultivation methods and harvest 
dates. 

Bertrand, et al 
(1987) 

Protein and  
IVOMD of grass 
hay 

 35 of 
each 
sp. 

Samples collected over 6 years, 4 grass 
species, maturities, fertilisation, hay-
making procedures, storage conditions. 

Brown, et al 
(1990) 

Dietary quality of 
whole-plant 
maize forage  

40 to 
60 

3 years, 6 locations, various hybrids. Valdes, et al 
(1990) 

Protein, ADF in 
hay 

650 Samples from North America, Japan, 
Europe, pure and mixed grasses and 
legumes, various sample drying methods; 
samples with extreme spectra were 
removed. 

Shenk and 
Westerhaus 
(1991b) 

Chemical 
composition of 
maize grain  

262 Samples of shelled, ear, grain + cob, high 
moisture, various sample drying methods; 
samples selected to remove those with 
extreme spectra. 

Shenk and 
Westerhaus 
(1991b) 

Nutritive quality 
of grasses  

237 Samples collected over 4 years, from up to 
5 sites, at up to three maturities, 
considerable variation in species 
composition. 

Garcia-Cuidad, et 
al (1993) 

Diet quality from 
faecal profiling 

148 76 diets constructed from more than 50 
forage species. 

Showers (1997) 

3.2. Derivation of calibration equations. 
 
Least squares multiple linear regression analysis has been commonly used to develop 
prediction (i.e. calibration) equations.  The selection of wavelengths into an equation can be 
done by several methods − stepwise inclusion is frequently used.  In this process, the 
wavelength which is most highly correlated with the analyte concentration is identified, then 
tested with each other individual wavelength to find the best 2-term equation.  This process is 
repeated using the 2-term equation together with each other individual wavelength, then the 
best 3-term equation, etc., until some predetermined statistical standard has been reached 
(Bertrand, et al 1987). Other methods of selecting independent variables (i.e. wavelengths) in 
a multiple regression equation (e.g. stepwise inclusion, backward elimination, etc.) are 
discussed in Statistical Analysis Systems (1988).  Irrespective of the method used, there is no 
guarantee that the best equation is finally obtained.  Testing all possible combinations by the 
combination regression method (Bertrand, et al 1987) may identify the best prediction 
equation.  This takes considerable computing time and does not protect against overfitting, 
collinearity or selecting wavelengths which are excessively correlated with the analyte 
concentration. 
 
In most cases, more than one wavelength is used to predict analyte concentrations.  For 
example, protein, NDF and IVOMD in subtropical forages were predicted with 1 to 6 
wavelengths (Brown and Moore 1987) and 3 to 7 (Brown, et al 1990) with R2 = 0.67 to 0.98. 
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Shenk, et al (1985) used between 5 and 9 wavelengths to predict protein, fibre, lignin and in 
vitro DM digestibility (IVDMD) in a variety of grasses and legumes with R2 between 0.95 
and >0.99.  Valdes, et al (1990) achieved R2 of not less than 0.97 in predictions of ADF, 
protein and IVDMD in whole-plant maize by equations which included between 5 and 10 
wavelengths.  In this study, different numbers of wavelengths were selected to analyse these 
constituents in plants harvested in different years. 
 
“Overfitting” involves using a large number of wavelengths giving a highly accurate equation 
as judged by statistics such as the R2, the standard error of cross validation (SECV), or the 
regression F value.  However, these equations may not accurately predict analyte 
concentrations when applied to data other than those used to derive the equation. The problem 
of overfitting is related to the high correlation between absorbances at different wavelengths 
(Bertrand, et al 1987) and to the equation recognising features of the calibration data set 
which are not representative of the data which will be used in predictions (Hruschka 1987).  
Overfitting is recognised (Hruschka 1987) by standard errors of calibration (SEC) being much 
less than the standard error of the reference (laboratory) determinations (SEL), large 
differences between reference values and NIR spectroscopy values, and a SEP greater than 
twice the SEC. Biston, et al (1989) suggested that over-fitting can be avoided by choosing 
equations which give the least SEP, rather than the lowest SEC. 
 
Standard stepwise methods of developing a multiple regression equation ultimately select 
only some of the available wavelengths, and thus ignore much potentially useful information.  
Statistical treatments which use the whole of the available spectral information (so-called 
“full spectrum” methods) are available.  These include principal component analysis (Robert, 
et al 1986; Berglund, et al 1990), principal component regression analysis (Cowe and 
McNicol 1985; Bertrand, et al 1987; Aastveit and Marum 1993), and partial least squares 
analysis (Manne 1987; Berglund, et al 1990; Shenk and Westerhaus 1991a). According to 
Givens, et al (1997) the variables developed from full spectrum methods are independent of 
each other, which addresses the problem that absorbances at nearby wavelengths are related. 
Haaland and Thomas (1988) have discussed the advantages and disadvantages of these 
methods v. the classical and inverse least squares approaches.  Shenk and Westerhaus (1991a) 
and Smith and Kelman (1997) reported greater precision from equations derived by partial 
least squares than stepwise multiple regression methods, although Smith, et al (1998) found 
that both methods gave equations of similar accuracy when applied to the chemical 
composition of perennial ryegrass.  

3.3. Statistical assessments of the quality of NIR calibrations and 
predictions. 
 
Several statistics are used to describe the quality of calibration and prediction equations.  
These are listed, with methods of calculation, by Williams (1987) and are summarised in 
Table 5. 
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Table 5.  Statistics to describe the quality of NIR spectroscopy calibration and prediction 
equations. 
 

Statistic Definition 
Standard error of 
calibration (SEC) 

Variability in the difference between predicted values and reference 
values when the equation is developed from the calibration data set 

Standard error of 
prediction (SEP) a 

Variability in the difference between predicted values and reference 
values when the equation is applied to the validation data set 

Standard error of 
cross validation 
(SECV) 

Variability in the difference between predicted values and reference 
values when the equation is applied to a subset of data from the 
calibration data set 

Coefficient of 
determination (R2) 

Proportion of variability in the reference data accounted for by the 
regression equation; may be adjusted (R2

adj) to account for the 
number of degrees of freedom in the regression equation 

Correlation 
coefficient (r) 

Degree to which analyte values and log(1/R) values at particular 
wavelengths are correlated 

Bias (D) The mean difference between the predicted and the reference values 
a also called “standard deviation of performance” (Williams 1987) or “standard error of the 

estimate” (Statistical Analysis Systems 1988) or “standard error of analysis (Brown, et al 
1990) or “standard error of selection” (Smith and Flinn 1991). 

 
 
The SEC may be calculated as follows (Smith and Flinn 1991): 
 

SEC  =  {Σ(Xi − Yi)2 / (N − p − 1)}0.5 
 

where: Xi = predicted value of the ith item in the validation set 
 Yi = reference value of ith item in the validation set 
 N = number of items in the validation set 
 p = number of independent variables in the prediction equation 
 
Adesogan, et al (1998) suggested that equations with the largest R2, smallest SEC, and lowest 
number of spectral terms (to avoid overfitting) should be selected. Stimson, et al (1991) 
recommended the following extra criteria, in reducing order of importance: 

(1) reject equations with any terms with an F value < 10, 
(2) reject equations with terms having F values > 100,000 
(3) select equations which use wavelengths that correspond most closely with 
those known to associate with the chemical fraction under consideration. 

 
Calibration equations are routinely validated against another data set in which reference 
analyte values have been determined.  The samples in the validation set are normally different 
to those which were used to develop the prediction equation, and are usually a smaller set than 
the calibration set.  The predicted values will normally differ from the reference values.  
Much of this is because of random error, but there are two types of systematic error.  If the 
regression coefficient is different from 1.0, Williams (1987) noted that this will introduce a 
systematic bias at either end of the range of predicted values.  Predictions may be biased, i.e. 
displaced by a constant amount from the reference values.  A standard error of prediction 
corrected for bias (SEP(C)) can be calculated as follows (Smith and Flinn 1991): 
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SEP(C)   =  {Σ (Xi − Yi)2 − N (bias)2 / (N − 1)}0.5 

 
where: Xi = predicted value of the ith item in the validation set 
 Yi = reference value of ith item in the validation set 
 bias = difference between overall means 
 N = number of items in the validation set 
 
Some workers use all the available reference data to construct the calibration set. Validation is 
then done by taking a series of randomly selected subsets of the calibration data and 
examining the distribution of differences between the predicted and reference values for each 
set.  The statistic which describes the precision of the prediction is then the standard error of 
cross validation (SECV). 
 
Williams (1987) has provided rules for interpreting values for bias, SEP and correlation 
between predicted and reference values. He recommended that the SEP should not be more 
than 3 % of the mean reference value for that analyte.  Westerhaus (1985, cited by Stimson, et 
al 1991) recommended that the SEP should be no greater than twice the SEL.  Bias can be 
assessed by the size of the ratio of bias2 : SEP2 in relation to the mean of the reference values 
(Hruschka 1987).  This ratio should be small.  A uniform bias can be corrected by adjusting 
the regression intercept.  Displacements of predicted values at either end of the reference 
range can be corrected as described by Williams (1987). 

3.4. Technical errors in NIR spectroscopy. 
 
Although NIR spectroscopy is rapid and technically simple to carry out, there are nearly 40 
sources of error (Williams 1987).  These contribute to error in both the calibration and 
validation processes.  As indicated above, between-sample variations in water content and 
particle size are particularly important. 
 
Williams (1987) listed sources of error (summarised in Table 6) and has discussed ways in 
which these may be controlled.   In practice, NIR spectroscopy laboratories go to lengths to 
control ambient temperature, sample water content, and vibration.  
 
Table 6.  Procedural sources of error in NIR spectroscopy (selected from Williams 
1987). 
 
Instrument factors Sample factors 
instrument noise variations in water content 
stray light bulk density, texture, packing characteristics 
non-linearity of signal sample temperature 
static electricity subsampling procedures 
instrument temperature control mean particle size, particle size distribution 
fluctuations in power supply mixing after preparation 
instrument geometry sample storage 
cell window characteristics  
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3.5. Errors in the reference values. 
 
Reference errors arise from using different subsamples to conduct the NIR spectroscopy and 
reference analyses, and from random and systematic errors in the reference methodology 
(Hruschka 1987; Sorensen 2002).  Systematic errors (bias) should be identified and 
eliminated.  These may include errors relating to the chemistry of the reference determination 
such as the loss of N from refractory substances in the Kjeldahl N determination or use of an 
inappropriate factor to convert N to protein.  Analytical methods should be standardised as 
much as possible to reduce random error.  The amount of random error in the reference 
analyses can be expressed as the laboratory standard error (SEL) as described by Smith and 
Flinn (1991): 
 

SEL  =  {Σ(X1 − X2)2 / N}0.5 
 

where: X1, X2 = duplicate reference analyses 
 N = number of samples 
 
When NIR spectroscopy is used to predict more complex outcomes, such as digestibility or 
intake (e.g. Givens, et al 1997; Coleman, et al 1989) or animal performance (Lippke, et al 
1989) then the correction of reference errors becomes much more problematic.  Norris, et al 
(1976) used NIR spectroscopy to predict dry matter (DM) and digestible energy (DE) intakes 
of tropical and temperate hays, silages and fresh forages.  They obtained R2 for DE intake and 
DM intake of 0.72 and 0.64.  Much of the lack of precision appeared to be caused by a subset 
of the data, and when these were eliminated, R2 increased to 0.87 for DM intake and 0.90 for 
DE intake.  The result of removing these outliers does not prove that the reference values for 
these samples were erroneous, but it is possible that the calibration samples may have 
included material which was corrupted by laboratory errors, or mis-labelled, etc. 
 
Errors in reference values inflate the errors associated with NIR prediction equations.  If an 
estimate of the reference measurement error variance is available Faber and Kowalski (1997) 
and Sorensen (2002) offer methods of correcting the SEP and/or SECV.   
 
It can be expensive to reduce the incidence of reference error.  Wet chemistry methods are 
consuming of time, labour and experimental materials, including samples.  The effect of 
reducing reference error may be negligible if the variability in the reference material is less 
than that in the NIR data (Sorensen 2002).  He suggests that “It may be better to reduce the 
number of replicate (reference) analyses and instead introduce more samples to improve the 
robustness of the calibration.”  The use of NIR spectroscopy to predict complex animal 
responses like intake, digestibility and growth involves the preparation of very expensive 
calibration data sets, and a wide variety of situations must be encompassed to obtain an 
adequately robust calibration.  Sorensen’s (2002) recommendations have particular relevance 
to these situations. 

3.6. Portability of calibration equations. 
 
A calibration performed on a particular instrument can not be expected to apply to any other 
instrument.  Differences in internal geometry (positioning of mirrors, gratings, sample cell, 
etc.), and the laboratory environment (temperature, electrical voltage, vibration, sample 
preparation) lead to differences in the performance of different instruments. 
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The portability of prediction equations between instruments has been investigated by several 
authors.  Shenk, et al (1985) demonstrated that prediction equations for protein, ADF, NDF, 
lignin and IVDMD of legumes and grasses could be used by other instruments of the same 
model with acceptable accuracy and precision.  On the other hand, Williams and Krischenko 
(1986) could not duplicate protein determinations while using two similar instruments, and 
Shenk and Westerhaus (1985) found that quite different instruments produced equations with 
different numbers of wavelengths and predictive performances.  Similar data are presented by 
Valdes, et al (1987).  They reported similar R2 and SEP for IVDMD in whole-plant maize 
from different instruments, but noted that protein estimations differed.  Offer (1993, cited by 
Givens, et al 1997) has warned that even instruments which have been matched by the 
manufacturer may still behave differently, especially with more complex equations.  
 
Universal calibrations are intended to apply to “all reasonable samples of a product”, and 
while having broad coverage they may not be as accurate as more narrowly-based calibrations 
(Shenk 1989).  Universal equations have been tested under several circumstances.  Two 
examples are those provided by Williams and Cordeiro (1985) for moisture and protein in 
wheat grain and Valdes, et al (1990) for ADF, protein and IVDMD in whole-plant maize 
forage.  Both groups were able to develop satisfactory a satisfactory universal calibration, 
provided that this was based on reference data obtained for the whole of the years and 
locations under consideration.  In both cases, single-year calibrations gave unacceptably large 
biases when they were applied to years other than that for which they were derived.  As a 
third example, Smith and Flinn (1991) developed broad-based calibrations to predict protein, 
NDF and IVDMD in mixed temperate pasture.  The equations successfully predicted these 
constituents in the validation set (which was a subset of the original samples) but there was 
some bias when constituents in new samples were analysed.  Smith and Flinn (1991) 
recommended that equations should be recalibrated with a small number of reference values 
whenever they are used in a new context. 
 
Notwithstanding the reservations expressed above, there are several examples of the use of 
universal calibrations.  The United Kingdom agricultural industries have adopted a 
“universal” equation to predict the in vivo OM digestibility of grass silage (Givens, et al 
1997), the Norwegian Forage Research Program has used a universal equation since 1982 
(Aastveit and Marum 1993), and Givens, et al (1997) cite another four examples of European 
use of universal equations.  
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4. Applications of Near Infrared 
Reflectance Spectroscopy in Agriculture 
4.1. NIR spectroscopic analysis of feed chemical composition 
 
Norris and Hart (1965, cited by Norris, et al 1976) used NIR spectroscopy to predict the 
moisture content of grains and oilseeds, and Norris, et al (1976) are credited with the first 
application of NIR spectroscopy to the analysis of forages.  In this paper, they reported the 
results of NIR spectroscopy analyses for chemical constituents, digestibilities and DM intakes 
of a range of temperate and tropical grasses, and lucerne hay, fed to sheep.  Their precisions 
(SEP for protein, NDF, OM and DM digestibilities, and DM intake of 0.74 %, 2.39 %, 2.5 % 
and 8.6 g/kg liveweight) were sufficiently high for them to claim that “… infrared reflectance 
has the potential for use in rapid evaluation of forage quality”. 
 
The literature on the use of NIR spectroscopy to predict the chemical composition of animal 
foods and animal-derived biological materials is now voluminous.  Murray (1996), Givens, et 
al (1997) and Givens and Deauville (1999) have reviewed the earlier literature on NIR 
spectroscopy in the analysis of the chemical composition and digestibility of animal forage 
and concentrate feeds. 
 
The precision and accuracy of the predictions are critical to the acceptance of NIR 
spectroscopy as an analytical tool.  Generally, SEP are very low in relation to the mean 
constituent content, bias is negligible, and R2 values of greater than 0.8 are routinely reported 
(Table 7).  However, these statistics are not informative unless they can be compared to 
similar values for the reference chemical methods. The standard deviation of Kjeldahl N 
determinations is 0.43 % (Templeton, et al 1983; standard error), 0.41 % (O’Keeffe, et al 
1987), 0.44 % (Lyons and Stuth 1992), or 0.2 % (cited in Faber and Kowalski 1997). 
Templeton, et al (1983) reported standard errors of 1.40 % for NDF, 1.70 % for ADF and 
0.90 % for lignin, and Lyons and Stuth (1992) obtained a standard error for digestible  OM  
determinations  of 1.68 %.   SEL  of conventional  methods  for  DM (0.7 %),  protein (5.0 
%), ADF (9.1 %), NDF (8.2 %) and lignin (1.9 %) were reported by Stimson, et al (1991). 
The effects of sample type (and thus sampling variation) on reference method precision is 
evident in the values reported by Melchinger, et al (1986).  These authors reported standard 
errors of 0.14 and 0.26 % for protein in maize grain and maize stover, respectively.    
 
Few authors have reported the variability of duplicate NIR spectroscopy measurements.  
O’Keeffe, et al (1993) reported standard deviations for the difference between duplicate NIR 
values of a similar order to that for the Kjeldahl determination, i.e. 0.22 %.  Standard errors of 
duplicate NIR determinations for protein, fibre and water-soluble carbohydrates in maize 
grain and protein and ADF in maize stover of 0.16, 0.11, 0.21, 0.28 and 0.46 % respectively 
(Melchinger, et al 1986) were 6 to 22 % higher than those for chemical determinations.  
Starch in maize grain was determined substantially less precisely by NIR than by laboratory 
measurement, while the reverse situation applied to predictions of IVDOM and ME. Finally, 
when estimates of the precision of conventional reference chemical methods are compared 
with cited NIR spectroscopy SEP it should be remembered that in almost every case, reported 
SEP have not been corrected for imprecision in the reference data, and that this decreases the 
precision of NIR predictions. 
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Table 7.  NIR spectroscopic prediction of the chemical composition of forages. 
 
Sample type Constituent Reference 

mean (%) 
SEP 1 
(%) 

Bias 
(%) 

R2 Author 

Lucerne forage ADF 33.3 1.30 -0.1 0.94 Martens, et al (1984) 
 NDF 42.3 1.46 -1.0 0.95  
 Protein 20.8 0.42 -0.3 0.98  
Mixed temperate  ADF 33.5 1.70 0.8 0.98 Martens, et al (1984) 
legumes NDF 41.9 2.23 1.0 0.98  
 Protein 18.0 1.00 -0.3 0.97  
 Lignin 6.1 0.63 -0.2 0.96  
Lucerne forage Protein 12.6 - 24.8 0.81  0.96 Bertrand, et al (1987) 
Stargrass/bermuda 
grass 

Protein 4.3 - 23.9 0.83 0.96 0.95 Brown and Moore (1987) 

American joint vetch Protein 0.6 - 4.6 0.32  0.21 0.82  
Bermuda grass Protein 4.0 - 17.7 0.92 -0.07 0.92 Brown, et al (1990) 
Stargrass Protein 1.6 - 26.0 0.85 -0.24 0.89  
Digit grass Protein 2.6 - 14.0 0.90 -0.15 0.87  
Bahia grass Protein 3.4 - 15.6 0.77 -0.11 0.88  
Maize stover ADF 34.3 1.55 0.14 0.79 Melchinger, et al (1990) 
 Protein 6.9 0.60 -0.06 0.87  
Maize grain Protein 11.1 0.29 0.05 0.96 Melchinger, et al (1990) 
 Crude fibre 4.5 0.25 0.04 0.90  
 Starch 68.3 1.29 0.06 0.94  
 WSC 3 2.6 0.59 0.17 0.73  
Whole-plant maize  ADF 14.0 - 38.8 1.6 0.1 0.88 Valdes, et al (1990) 
forage2 Protein 5.1 - 10.0 0.5 0.1 0.8  
Maize stover ADF 34.9 1.43 0.14 0.94 Zimmer, et al (1990) 
 NDF 65.4 1.78 0.30 0.95  
 Lignin 3.3 0.42 -0.10 0.77  
Temperate mixed  NDF 22.5 - 63.5 2.17 -0.01 0.95  
grasses/legumes Protein 7.3 - 28.7 0.85 0.18 0.97 Smith and Flinn (1991) 
Mixed pasture  ADF 25.4 - 40.8 1.42  -0.19 0.76 Garcia-Cuidad, et al (1993) 
species NDF 38.3 - 70.4 2.06  -0.49 0.86  
 Protein 5.8 - 16.4 0.57  0.04 0.90  
 Lignin 1.9 - 8.3 0.45  < 0.01 0.88  
Temperate grass silage Protein 6.5 - 17.6 0.63  0.90 O’Keeffe, et al (1993) 
Whole-plant maize  DM 87.4 - 97.0 4.25  0.61 Cozzolino, et al (2000) 
forage ADF 6.8 - 59.0 1.85  0.98  
 NDF 33.1 - 89.7 2.43  0.83  
 Protein 1.2 - 13.8 1.04  0.86  
 Ash 1.5 - 16.0 0.38  0.64  
1 standard error of prediction 
2 multi-year calibration; equations for single years had R2 between 0.81 and 0.95 for these 

variables 
3 water-soluble carbohydrates 
4 equations derived by stepwise regression 
5 constituents expressed on an organic matter basis 
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Fairbrother and Brink (1990) obtained SEP for pectin, arabinose, xylose and glucose in forage 
cell walls of 0.94, 1.04, 2.90 and 2.53 %, measured in a range of temperate and tropical 
grasses and legumes.  The SEL for these determinations were 0.6, 0.4, 0.5 and 0.6 %, 
respectively.  Condensed tannins in leucaena forage (Wheeler, et al 1996) and lotus (Smith 
and Kelman 1997) were successfully determined by NIR spectroscopy.  R2 for regression of 
NIR values on laboratory reference values were 0.84 and 0.82, respectively.   
 
Mineral elements can not be detected directly with NIR spectroscopy; but are detected 
indirectly because their presence in organic complexes affects H bonds (Shenk 1992, cited by 
Givens et al 1997) or the concentrations of organic constituents (Watson, et al 1976). NIR 
predictions of mineral contents are not generally reliable.  Shenk and Westerhaus (1985) 
obtained R2 of 0.17 to 0.74 for NIR predictions of P, K, Ca and Mg contents of various 
forages and Smith, et al (1991) were only modestly successful in predicting Mg contents in 
perennial ryegrass. Cozzolino, et al (2000, Table 7) reported variable prediction of the ash 
content of maize forage. Windham, et al (1991) had SEP equivalent to 10 % of the mean 
reference value for predictions of ash in pasture, oesophageal fistula extrusa and faeces, 
although their R2 values were between 0.89 and 0.93. P contents were successfully predicted 
by Showers (1997) from faeces, possibly because of the P=O bonds in phosphate groups. 
 
The data reviewed in Table 7 suggest that organic analytes in animal feeds can be predicted 
by NIR spectroscopy with acceptable precision and accuracy.  Estimates of protein are usually 
associated with R2 > 0.9, although cell wall constituents (lignin, ADF, NDF) are predicted 
less precisely.  The average SEP and R2 of NIR predictions in Table 7 are 1.17 % and 0.89, 
respectively.  Bias (average = 0.03 %) is small in relation to the mean constituent contents.  
Further, NIR spectroscopy appears to be as precise as conventional (wet) chemical methods of 
analysing organic material.  These characteristics will make NIR spectroscopy an acceptable 
alternative analytical method, in those laboratories which have the capacity to measure and 
interpret NIR spectra and to perform the wet chemical analyses which are required to provide 
the reference values for NIR calibration.   

4.2. Digestibility prediction by NIR spectroscopy. 
 
There is a large data base of forage digestibilities predicted by NIR spectroscopy. 
Performance in this area is illustrated by the data summarised in Table 8. NIR spectroscopy 
predicts feed digestibility with somewhat lower precision than for chemical composition, e.g. 
the SEP for digestibility are about twice the size of those for organic chemical constituents. 
Nevertheless, other aspects of prediction like bias and R2 (averages of 0.045 % and 0.906, 
respectively) are similar between chemical composition and in vitro digestibility.  
Digestibility is influenced by the amounts of food constituents like NDF and ADF, and the 
patterns of chemical bonding between hemicellulose and lignin (O’Keeffe, et al 1987).  It is 
not surprising that with in vitro digestibility, where feed-related factors mainly influence the 
result, the performance of NIR spectroscopy is similar to the Tilley and Terry and pepsin-
cellulase methods (Table 8).  However, there are noticeable differences between predictions 
of in vitro and in vivo digestibilities. For example, Coelho, et al  (1988) predicted the IVDMD 
digestibility of  bermudagrass  with  R2  =  0.9 and bias =  2.1 %; predictions of in vivo DM 
digestibility were less precise (R2 = 0.69) but with a similar bias.  Digestibility is also 
influenced by non-feed factors, such as level of feed intake and the rate of passage of feed 
through the digestive tract.  These may not be predicted well by NIR techniques (or any 
conventional chemical method).  This may explain the lower precision and greater bias of the 
NIR predictions (average bias and R2 of −0.77 % and 0.78, respectively). In most cases the 
biases are small in comparison to the means, and are probably not biologically important. 
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NIR spectroscopy predicts in vivo digestibility at least as precisely as other predictive 
methods like chemical composition or in vitro or enzyme digestibilities. O’Keeffe, et al 
(1987) reported the standard deviation of differences between NIR measurements of silage 
IVDMD digestibility was      0.77 %, compared to 0.85 % for the Tilley and Terry (1963) 
method. In the study of Coelho, et al (1988), in vivo DM digestibility of six forages was 
predicted from NDF content, 5 different in vitro digestion methods, and six different cellulase 
methods, with similar SEP, i.e. from 0.08 to 0.15 %.  R2 for these procedures ranged from 
0.72 to 0.88.  Barber, et al (1990) predicted in vivo OM digestibility from measures of 
IVOMD obtained by Tilley and Terry and pepsin-cellulase digestions, and predictions from 
lignin and modified ADF, with an NIR prediction. NIR was the most precise method (R2 = 
0.76, v. 0.14 to 0.64 for the other methods), and has similar or better accuracy (i.e. absence of 
bias) as the other methods.  Riviere, et al (1989) compared in vitro (24 h incubation in rumen 
liquor), in situ (24 h incubation) and pepsin-cellulase digestions with NIR spectroscopy to 
predict in vivo OM digestibility of green forages.  Pepsin-cellulase performed well with first-
cut forages (R2 = 0.88) but not with more mature samples (R2 = 0.35). Rumen digestion 
procedures gave modest results (R2 = 0.50). NIR predictions had R2 = 0.83 and performed 
better than pepsin-cellulase when compared on the same set of forages. 
 
NIR spectroscopy out-performed conventional in vitro methods in the study of Givens, et al 
(1991) with ammoniated and untreated cereal straws.  In vivo OM digestibility was predicted 
more precisely by NIR spectroscopy (R2 = 0.647) than by the Tilley and Terry in vitro method 
(R2 = 0.600), or cellulase methods (R2 = 0.48 to 0.509).  De Boever, et al (1996) used a data 
set of 64 grass silages to compare the predictive capacities of NIR spectroscopy with in vitro 
digestion and treatment with cellulases.  In vivo OM digestibility was predicted relatively 
poorly (R2 = 0.528 to 0.646) by chemical composition, but somewhat better by the in vitro 
and cellulase techniques either alone (R2 = 0.644, 0.684) or in vitro data together with DM 
and protein (R2 = 0.779), or cellulase digestion data with protein, fibre and DM (R2 = 0.841).  
NIR spectroscopy was similarly precise (R2 = 0.792). Adesogan, et al (1998) found that 
predictions of organic matter digestibility of whole-crop wheat by in vitro, in situ, neutral 
detergent/cellulase digestions (R2 = 0.41, 0.44, 0.41), and gas production (R2 = 0.26), were 
substantially poorer than the prediction from NIR spectroscopy (R2 = 0.87).  
 
Flinn and Heazlewood (2000) used 16 Australian forages − seven legumes, four temperate 
cereal hays, two sorghum hays, and three temperate pasture hays − to compare NIR 
spectroscopy with other predictive methods.  NIR predicted in vivo DM digestibility as 
efficiently as pepsin-cellulase digestion (r = 0.95), and better than equations using ADF and N 
contents.  The performance of NIR was surprisingly good, as the calibration was based on 
reference values not directly determined but predicted from a regression of in vivo DM 
digestibility on pepsin-cellulase digestion.  

4.3 Prediction of food intake and animal growth rate from forage 
samples 
 
There appear to be few predictions of food intake or animal performance from the NIR 
spectra of forages.  Norris, et al (1976) correlated the DM intakes of 79 tropical and temperate 
forages with their NIR spectra (r = 0.79, SEP = 7.8 g). DM intake of bermudagrass forage was 
predicted by Coelho, et al (1988) with R2 = 0.84 and a bias of -5.7 g/kgW0.75.d-1 (8.5 % of the 
mean reference DM intake). Lippke, et al (1989) predicted heifer growth from NIR analysis 
of bermudagrass, sorghum hybrids, paspalum and ryegrass forages. They identified five 
wavelengths which were highly correlated (r = 0.976) with growth.  Two of these (1696 and 
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2298 nm) were correlated (r = -0.928, -0.909) with digestible OM intake, and 1696 nm was 
also correlated (r = 0.927) with forage ADF content.  More recently, Steen, et al (1995) 
showed that silage consumption was correlated with the concentrations of forage N and fibre 
fractions (r = 0.19 to 0.49), but more highly correlated with NIR predictions (r = 0.85).  DM 
intakes were predicted by NIR spectroscopy for the set of 16 Australian forages described 
above (Flinn and Heazlewood 2000). NIR (r = 0.60) gave the best results. Neither ADF or 
NDF contents, pepsin-cellulase digestion, or shear energy predicted DM intake precisely (r = 
0.05 to 0.32). 
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Table 8.  Prediction of digestibility and available energy contents. 
 
Sample type Parameter 

1 
Reference 
mean (%) 

SEP 2 
(%) 

Bias  
(%) 

R2 Author 

In vitro digestibility:       
Lucerne forage 3 IVDMD 53.3 - 74.3 2.22  0.89 Bertrand, et al (1987) 
Temperate grass silage IVDMD 40.7 - 69.4 2.96  0.72 O’Keeffe, et al (1987) 
Smooth bromegrass IVDMD 66.3 1.62 -0.44 0.92 Gabrielsen, et al (1988) 
 CDMD 67.7 1.66 0.09 0.97  
Crested wheatgrass IVDMD 61.5 1.62 -0.29 0.97 Gabrielsen, et al (1988) 
 CDMD 70.1 1.69 0.50 0.98  
Lucerne forage IVDMD(t) 76.0 2.07 0.1 0.96 Bughrara, et al (1989) 
Maize stover IVDOM 61.3 2.24 -0.12 0.88 Zimmer, et al (1990) 
Mixed temperate grasses 
and legumes 

CDMD 53.7 - 82.0 2.53 0.48 0.86 Smith and Flinn (1991) 

Kikuyu grass gas prodn.4 0.038 - 0.047 > 0.002 -0.001 - 0.0 0.52 Herrero, et al (1996) 
       
In vivo digestibility:       
Temperate pasture grasses 
and legumes 7 

OMD 55.5 - 80.8 2.51  0.90 Robert, et al (1986) 

Grass and lucerne hays DMD 56.9  -0.3  Coelho, et al (1988) 
Cereal straw 5 OMD 31.6 - 64.9 3.71 -1.24 0.647 Givens, et al (1991) 
Temperate grass silage 6 OMD 61.0 - 80.8 2.35  0.82 Baker, et al (1994) 
Mixed pig feeds OMD 69.5 - 93.5 1.79   Aufrere, et al (1996) 
Mixed ruminant feeds OMD 65.2 - 90.6 2.15    
Grass silage 8 OMD 61.6 - 83.7 2.9  0.753 de Boever, et al (1996) 
Whole-crop wheat  OMD 59.8 - 74.2   0.72 Adesogan, et al (1998) 
forage DOMD 55.8 - 70.8   0.87  
     
Digestible, metabolisable and net energy:     
Grass hay ME  0.45 -0.15  Berglund, et al (1990) 
Grass silage ME 0.61 -0.16   
Legume hay ME 

8.1 - 11.8 
0.55 -0.18   

Legume silage ME  0.70 -0.12   
Grass silage 8 ME 6.67 - 11.88 0.31  0.77 de Boever, et al (1996) 
 NEL 3.76 - 7.15 0.26  0.88  
Mixed pig feeds DE 11.96 - 17.11 0.37   Aufrere, et al (1996) 
 ME 11.61 - 16.72 0.39    
Mixed ruminant feeds DE 13.23 - 18.85 0.57   Aufrere, et al (1996) 
 ME 10.68 - 15.04 0.42    
1 IVDMD, in vitro dry matter digestibility by the Tilley and Terry method; IVDOM, in vitro digestibility of 

organic matter; IVDMD(t), IVDMD determined by a final extraction with neutral detergent solution; 
CDMD, DM digestibility determined by cellulase; OMD, in vivo organic matter digestibility; DOMD, 
digestible organic matter content (DM basis); ME, metabolisable energy content (MJ/kg DM, pigs; /kg 
OM, ruminants); NEL, net energy for lactation content (MJ/kg DM, pigs; /kg OM, ruminants) 

2 standard error of prediction 
3 equations derived from log10(1/R) values 
4 gas production rate (/h) calculated from the McDonald (1981) equation 
5 pooled data for ammoniated and untreated straws 
6 best of the 20 equations examined 
7 equations derived by principal components analysis 
8 after correction for bias 



 
 

21 

5. Predictions of Animal Performance 
5.1. Predicting animal performance from faecal chemistry  
 
Relationships between faecal chemistry and diet composition have been investigated, and 
used, since the 1940s.  For example, faecal N determined by conventional wet chemistry was 
used to predict the digestibility of pasture by Lancaster (1949).  Various aspects of the use of 
faecal indices for predicting diet digestibility, and protein and mineral (especially P) contents, 
have been reviewed by Van Soest (1994, pp. 111-113) and Wehausen (1995). Howery and 
Pfister (1990) have discussed the use of faecal indices with particular attention to their use in 
deer. A continuing theme running through this work has, however, been warnings against the 
uncritical use of faecal/diet relationships.  Several authors have warned about the problems 
caused by tannins, pasture species composition, fertilisation practice, inappropriate 
application of regression relationships, etc. (e.g. Hobbs 1987; Wehausen 1995; and the review 
by Corbett 1978).  
 
The difficulties inherent in accurately predicting diet characteristics from faecal composition 
are illustrated in the investigation of Leite and Stuth (1990).  These workers attempted to 
predict dietary protein, IVDOM and feed constituent intakes of cattle from faecal OM and 
total N, N fractions, tannins, and proportions of monocotyledonous plant fragments.  No 
single component satisfactorily predicted diet quality. Predictions of diet protein content from 
faecal total N had R2 = 0.35.  When other faecal constituents were added to the prediction 
equations, R2 values increased, but not to levels which would give confidence in the use of 
these variables to predict diet protein or DOM contents (R2 = 0.51 to 0.57 for protein, 0.34 to 
0.37 for DOM), or any measure of nutrient intake (R2 = 0.35 to 0.51).  Leite and Stuth (1990) 
suggested that difficulties in measuring condensed tannins and the relatively uniform amount 
of monocotyledonous plants in the diets may have impaired the predictive ability of these 
equations.  They emphasised the role of plant tannins in confounding relationships between 
faecal N and diet protein contents. 
 
Notwithstanding the difficulties of quantitatively predicting diet nutritive value, faecal indices 
(especially total N) give good qualitative descriptions of the quality of a grazing animal’s diet.  
Many North American deer researchers have used faecal indices (determined by conventional 
chemistry) of dietary protein, P and energy content, perhaps because of the greater difficulty 
in obtaining blood, bone or oesophageal extrusa samples from wild deer than from domestic 
grazing animals.  
 
Faecal total N has been used in several instances to monitor the N content of deer diets (e.g. 
Leslie and Starkey 1985; Leslie, et al 1989; Osborn and Jenks 1998).   However, there have 
been relatively few controlled studies to attempt to validate this approach.  In elk (wapiti, 
Cervus elaphus nelsoni) faecal N content was closely correlated (R2 = 0.97) with diet protein 
content (Mould and Robbins 1981), provided that the diet was free of tannins.  Brown, et al 
(1995), in two trials, obtained similar results, but in their experiments the response to diet 
protein (which varied between 6.8 and 18.5 %) was influenced by greater and more consistent 
changes in response to diet digestible energy (5.9 to 13 MJ/kg).  This is consistent with the 
catabolism of body tissue under conditions of energy deficiency, and with the results of 
Mould and Robbins (1981) who showed that elk required 0.64 MJ digestible energy/kg 
W0.75.d-1 to maintain a positive N balance. This is similar to estimates of the ME requirements 
for maintenance of deer (e.g. Dryden, et al 2002). 
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Other faecal N fractions than total N change with changing diet protein content.  Howery and 
Pfister (1990) showed that white-tailed does fed 16.5 % v. 7.4 % protein diets excreted faeces 
with significantly different total, NDF-insoluble and metabolic N and P contents.   
 
While the positive effect of diet protein content on faecal N has been demonstrated several 
times, Mould and Robbins (1981) appear to be the only workers who have attempted to 
calibrate the response in deer, i.e. to report a regression coefficient. The low-tannin diets 
(protein contents of 3.8 to 29.3 %, DM basis) of Mould and Robbins (1981) dietary N content 
was related to faecal N content: 
 

Ndiet  =  0.77  +  0.49 × Nfaeces 
 

where: Ndiet   = dietary N content (%) 
 Nfaeces = faecal N content 
 

 Tomkins and McMeniman (1996) fed four diets of 9.1 to 20.5 % protein to rusa deer, and 
Osborn  and  Ginnett  (2001)  fed  five  diets  with  protein  contents  between  8.1 and  25.6 
% to white-tailed deer.  None of these diets contained tannins and within experiments the 
diets varied little in digestibility.  In both cases, deer fed higher-protein content diets either 
excreted more faecal N (Tomkins and McMeniman 1996) or had higher faecal N contents 
(Radj

2 = 0.81 for regression of faecal N content on dietary N content, Osborn and Ginnett 
2001).  Neither of these authors reported a regression equation. 
 
Deer saliva contains a protein which precipitates tannins (Austin, et al 1989), and this might 
be expected to protect the dietary/faecal N relationship of deer from the influence of tannins 
more than for other ruminants.  Hobbs (1987) and others have warned against the 
confounding effects of food tannins.  Mould and Robbins (1981) data showed clearly elevated 
faecal N contents when tannin-containing diets were fed.  Diets with different tannin contents 
fed by Osborn and Ginnett (2001) had no effect on faecal N at low diet protein contents, but 
significantly increased faecal N when high-protein diets were fed. 
 
Faecal indices of energy status include 2,6-diaminopimelic acid (DAPA) and NDF.  DAPA is 
found in some species of bacteria.  It is not commonly present in plant food constituents, and 
does not occur in mammalian tissue.  Increased faecal DAPA indicates increased growth of 
hindgut bacteria.  This population is limited by the availability of energy (e.g. Thornton 1970) 
and elevated faecal DAPA suggests an increased supply of bypass energy, originating from 
the diet.  Relationships between faecal DAPA concentration and diet quality have been 
investigated in several situations.  Leslie, et al (1989) showed that DAPA and total N 
increased through spring, summer and autumn as the nutritive value of feed in the white tailed 
deer and moose range they examined presumably improved.   Brown, et al (1995) found that 
faecal DAPA consistently changed with the digestible energy and protein contents described 
above.  The effects were large (up to 50 % change) but in different directions − highest faecal 
DAPA was associated with highest DE but lowest diet protein.  Similar results were reported 
by Osborn and Ginnett (2001).  These workers also demonstrated that faecal DAPA was not 
influenced by diet tannin content. 
 
Plant fibre is negatively correlated with food digestibility (e.g. Van Soest 1994, pp. 351, 408), 
and its concentration in faeces should be consistent with diet quality.  Brown, et al (1995) 
showed that faecal NDF content could be related to the diets described above.  NDF was 
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higher in the faeces of deer fed lower-DE and lower protein diets.   N is required by the rumen 
fibrolytic bacteria, and the excretion of more undigested NDF when diets are low in protein is 
thus to be expected. 
 
Phosphorus in white-tailed deer faeces responds to changes in diet P contents.  For example, 
white-tailed does fed diets with 0.5 v. 0.3 % P excreted faeces with significantly different P 
contents (Howery and Pfister 1990).  A similar behaviour of faecal total P in white-tailed deer 
was reported by Osborn and Jenks (1998).  

5.2. Applications of faecal NIR analysis to monitoring the 
nutritional environment and performance of grazing animals  
 
Lyons and Stuth (1992) and Showers (1997) have described the components of faeces and 
discussed their possible relationships with the NIR spectra and the diet.  The primary 
wavelengths identified by Showers (1997; Table 9) are similar to those listed by Norris, et al 
(1976) and in Givens and Deauville (1999) as being important in predicting forage quality 
from NIR analysis of the forages themselves.  Further details on the associations between 
wavelengths and chemical bonds and groups are given by Showers (1997). 
 
Table 9.  Relationships between faecal NIR spectra and the chemical constituents in the 
faeces of deer fed forages; primary wavelength listed first (from Norris, et al 1976; 
Showers 1997; Givens and Deauville 1999). 

 
Diet attribute 
predicted 

Matrix Wavelengths (nm) Chemical entities 

Predicted from faecal spectra:  
Protein  faeces 2324,1884, 1972, 1356 Aromatics, aliphatics (anti-

quality factors), nitrites, amino 
groups, carbonyl groups 
(protein) 

DOM faeces 2136, 1656, 1540, 1276 Phenolics, aromatic substances 
(lignin), alcohols (waxes), 
amines (ammonia), cellulose, 
protein 

    
Predicted from forage spectra:  
Protein  forages 2164, 2084, 2254, 1610  
Lignin grass silage 1658, 2286  
Lignin forages 1552, 1642, 2030, 1694  
NDF forages 2294, 2072, 1902, 1558  
In vivo DMD mixed grass 2266, 1662  
In vivo DMD hays 1326, 2266  
In vivo DMD forages 1666, 1992, 2266, 1596  
 
Prediction of diet quality and feed intake:   Stuth and his co-workers have developed 
relationships between faecal NIR spectra and the quality (i.e. the IVDOM and protein 
contents) of grazing cattle diets.  These relationships were developed from calibration data 
sets obtained by analysing oesophageal extrusa by the Tilley and Terry (1963) in vitro 
digestion method, and measurements of N content by wet chemistry.  Lyons and Stuth (1992) 
reported variable success in predicting the quality of diets selected by lactating and dry cows.  
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Protein predictions were unsatisfactory (R2 = 0.63) to good (R2 = 0.93), although they 
obtained better predictions of DOM content (R2 = 0.71 to 0.80).  There was little bias 
associated with either prediction.  The error in predicting protein contents may have been 
associated with different chemistries in the faeces of lactating, rather than dry, cows.  Similar 
results were reported by Coleman, et al (1989) for two trials in which NIR predictions of DM 
digestibilities and intakes of pen-fed cattle had R2 of 0.23 to 0.54 for DM digestibility and 
0.55 for DM intake.  These results may illustrate the difficulties in obtaining good predictions 
when the reference values are not reliable (markers were used to obtain the digestibility data 
in one trial) and when calibration equations are used in widely different situations.   
 
Lyons, et al (1995) more successfully predicted diet protein and DOM contents with R2 = 
0.98 and 0.87, respectively, and SEP of 0.49 and 1.12 %, when they applied their earlier 
equations (Lyons and Stuth 1992) to four different native pastures and a ryegrass pasture. 
 
In northern Australia, using mainly tropical pastures species, Coates (1989) derived NIR 
prediction equations for cattle with data obtained from grazing oesophageal fistulated steers 
or pen trials.   SECV for diet protein content, DMD, and digestible DM intake were 0.18 %, 
0.03, and 1.65 g/kg W.d-1, respectively.  R2 for these variables were 0.95, 0.86, and 0.73.  The 
values for protein and DDM are similar to those reported by North American workers.  
Interestingly, Coates (1989) was better able to predict DM digestibility from NIR 
spectroscopy than from the pepsin-cellulase in vitro method which predicted in vivo DMD 
poorly (R2 = 0.64, bias = 0.308 %).  
 
Prediction equations were developed for goats grazing a variety of Texan pasture species and 
types by Leite and Stuth (1995).  Diet IVDOM  and protein contents were predicted precisely 
and accurately (R2 = 0.94 and 0.92, bias = 0.16 and 0.18 %, and SEP corrected for bias = 1.28 
and 2.12 % for protein and IVDOM, respectively). 
 
Nutritional physiology can also be predicted from faecal NIR spectra. Whitley and Stuth 
(1996, cited in Stuth and Tolleson 2000) predicted rumen degradable, bypass and indigestible 
protein fractions in cattle diets.  Changes in NIR spectra can indicate digesta whole-tract 
passage rates.  Walker, et al (1998) found that the prediction of diet leafy spurge content 
improved (e.g. for goats, R2 increased from 0.04 to 0.54 then fell to 0.15) when faeces 
collected at 48 h after feeding were examined, rather than those collected at either 24 or 72 h.  
Using a similar approach, Lyons, et al (1995) obtained best prediction of oesophageal extrusa 
protein content from faecal measurements made 72 h after the extrusa were collected.  Lyons, 
et al (1993) showed that the NIRS-predicted diet protein and IVDOM contents of their 
supplemented and unsupplemented cattle became similar at 40 to 60 h after the supplements 
were withdrawn. 
 
Coates (1999) was able to predict the growth of Bos taurus × indicus heifers grazing a 
Urochloa/Stylosanthes pasture in north Queensland.  His precision was relatively high (R2 = 
0.89, SECV = 1.16 g/kg W). 
 
Prediction of plant species composition in animal diets:   Diet species composition 
of goats and cattle grazing rangelands has been identified by NIR spectroscopy.  Walker, et al 
(1998) successfully monitored the percentage of leafy spurge (Euphorbia esula) in sheep and 
goat diets, and reported substantially more accurate predictions from the best NIR equation 
(R2 = 0.96, SEP = 4.75 %, 5.01, bias = -0.94, 0.73 %) than from microhistological 
examination of faeces (R2 = 0.22, 0.32, SEP = 21.72 %, 20. 23, bias = 7.15, 7.64 %).  The 
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relative proportions of the 12C and 13C isotopes in faeces give information on the proportions 
of dicotyledonous and monocotyledonous plants in an animal’s diet.  Coates (1999) was able 
to predict quite accurately the proportions of Stylosanthes hamata (a legume) and Urochloa 
mosambicensis (a grass) in the diets of grazing cattle (R2 = 0.96, SECV = 0.82 δ13C units). 
 
Identification of gender, species, pregnancy and parasite burden:   NIR analysis 
of faeces has also been used to predict attributes unrelated to diet quality, but which give very 
useful animal management information.  These include predictions of growth rate, pregnancy, 
intestinal parasite burden, animal species and gender.   
 
Godfrey, et al (2001) were able to class ewes as pregnant or non-pregnant with 75 to 95 % 
success. Tolleson, et al (2001a) developed an equation which worked well with cattle grazing 
tropical forages but did not satisfactorily discriminate between pregnant and non-pregnant 
cows grazing temperate grasses.  It seems that present NIR equations will identify animals in 
mid to late pregnancy but not those in early pregnancy (Tolleson, et al 2000, 2001b).  
Tolleson, et al (2000, 2001c, cited in Tolleson and Stuth 2002), Godfrey, et al (2001) and 
Osborn, et al (2002, cited in Tolleson and Stuth 2002) have successfully (70 to 100 % 
accuracy) identified bulls v. heifers, ovariectomised v. intact cows, rams v. ewes, and gender 
in red, white-tailed and fallow deer, and African elephants. 
 
Bovine (cattle v. Bison bison) and cervine (Odocoileus hemionus v. O. virginianus, and 
Cervus elaphus v. Dama dama) species were successfully differentiated by Tolleson 
(unpublished, cited in Tolleson and Stuth 2002).   
 
Tick burdens apparently cause unique changes in the faecal NIR spectrum (Tolleson and Stuth 
2002) which allows the identification of animals at different stages of infestation.  The NIR 
spectra of heifers in the pre-infestation and pre-attachment stages differed from those obtained 
when the ticks were attached.  Predicted diet quality (contents of total protein, protein 
degradability fractions and DOM) differed between these periods (Tolleson, et al 2002). 
 
It is remarkable that NIR-based relationships have been equally, or more, successful than 
those derived from conventional methodologies. While NIR spectroscopy ostensibly predicts 
the concentrations of analytes like N, the faecal NIR spectrum probably contains more 
information than is given by chemical determinations of specific analytes.  Faeces is a 
complex mixture of undigested feed residues, microbial cells and endogenous substances 
(Dryden 1982; Lyons and Stuth 1992).  This mixture may be more completely characterised 
by an NIR spectrum than by specific chemical analyses. 

5.3. Faecal profiling using NIR technology 
 
Faecal profiling is the technique of regularly measuring the composition of animal faeces and 
from this, predicting aspects of diet quality and animal performance.  The Grazingland 
Animal Nutrition Laboratory at Texas A&M University has provided a commercial faecal 
profiling service to beef cattle producers in North America since 1994 (Stuth and Tolleson 
2000).  The purpose of the service is to give producers a way of monitoring the quality of 
their pastures (especially protein and digestible OM contents) and so to identify periods of 
nutritional stress.  User of the service provide faecal samples at regular intervals.  From these, 
the GAN Lab predicts diet quality from a calibration data set of 300 to 600 diet faecal pairs 
obtained from 8 United States and 1 Canadian location, and encompassing warm- and cool-
season plants (Stuth and Tolleson 2000).  The predicted diet quality information is linked with 
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a nutritional modelling program (NUTBAL Pro) to predict animal performance (Stuth, et al 
1999).  Details of the service and the methods that producers use to collect and send faecal 
samples are in Stuth and Tolleson (2000). 
 
The NIRS-NUTBAL Pro performance monitoring system predicted body condition of 
droughted cattle to within 0.5 score (Tolleson 2002). Eilers (1999) surveyed the adoption and 
effectiveness of the NIRS-NUTBAL Pro program throughout the United States.  Four percent 
of ranchers had adopted the service within 5 years of its first commercial release.   Users were 
satisfied with the service and most intended to continue with it.  Use of the NIRS-NUTBAL 
Pro service increased producers’ awareness of forage quality (86 % of cases), nutrient 
requirements of their animals (72 %),  feed efficiency (56 %),  and the timing of marketing 
(27 %).  Animal performance, and the cost of supplementary feed, were positively affected.  
In 35 % of cases the annual cost of supplementary feed decreased, by an average of 15.5 %, 
and 34 % of producers who managed a breeding property reported increased returns of 
USD26.50/year per breeder mated. 
 
In northern Australia, Coates (1999) found that NIR spectrometry was able to identify 
seasonal changes in the quality of diets eaten by weaner cattle grazing Urochloa/Stylosanthes 
pastures.  Predictions about IVDMD and protein contents, and digestible DM intake, were 
consistent with the observed rainfall and changes in the pasture species composition.  Cattle 
liveweight changes were also consistent with these NIR predictions. 
 
Currency is important in any nutritional monitoring system.  Expected changes in pasture 
condition should not be assumed to apply in all circumstances.  For example, Coates (2000) 
showed that the protein content of diets eaten by cattle grazing a variety of tropical grasses on 
seven properties in north central Queensland varied from 8.1 % to 2.5 % during March to 
June, 1999, but that in the previous year diet protein contents peaked in January and did not 
fall below 8 % until July.  Differences in pasture quality in different years are expected, but 
they have not been easy to identify in time for managers to take remedial action by providing 
N supplements or moving cattle to other pastures.  Faecal profiling is recommended by Coates 
(2000) as a means of obtaining timely information on diet nutritive value, species 
composition, leading to improved decision-making.  About 300 producers have adopted NIRS 
profiling in northern Australia (T. McCosker, personal communication).  Coates (2000) also 
recognises some limitations of NIRS profiling.  These include limited capacity to determine 
diet mineral contents (in a situation where P nutrition may be an important constraint on 
animal performance), limitations in the size of the calibration data set, and difficulties in 
monitoring the performance of NIRS predictions for parameters like growth and diet quality. 
 
In regions which are subject to seasonal dry periods pastures, especially those based on 
tropical grasses, become N deficient.  A commonly-used method of combating the adverse 
effects of pasture N deficiency is to give a N or protein supplement.  Timing of the start of 
supplementation influences the costs and responses to the supplement.  It has been shown (see 
references above) that NIR technology can assist producers to identify the best time to begin 
supplementation.  However, this is not the same as assessing the effectiveness of 
supplementation (which includes assessing consumption rates and uniformity of consumption) 
or identifying when supplementation could stop.  Lyons, et al (1993) made a first 
investigation into this problem by monitoring NIR predictions of diet protein and IVDOM 
contents of cattle grazing native Texan pasture and given a concentrate-based energy/protein 
supplement.  They were able to identify diet protein content differences between the 
supplemented and unsupplemented cattle, and to detect when the effects of the supplement on 
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these predictions ceased after the supplement was withdrawn.  The authors could not separate 
the direct effects of supplement consumption on the faecal spectra or the indirect effects 
which may have occurred if the supplement had altered diet selection behaviour.  However, 
for both protein and IVDOM the lag after withdrawal of the supplement and the 
disappearance of effects on the predicted diet composition were similar (about 40 to 50 hours) 
to accepted whole-tract transit times for cattle.   
 
NIRS measurements of pasture and silage quality have been used to give rapid and reliable 
predictions of the quality of intensively-managed, temperate pastures and silages.  Cosgrove, 
et al (1998) used NIRS as a way of rapidly describing the stratification of nutrients in a dairy 
pasture.  Such measurements will be valuable in developing decision systems for pasture-fed 
dairy cattle (e.g. Parker, et al 1995, cited in Cosgrove, et al 1998).  Corson, et al (1999) 
describe the use of rapid NIRS measurements of forage nutritive value coupled with a dairy 
cow nutritional modelling system to provide decision support for New Zealand dairy farmers. 

5.4. Application of NIR analysis to monitoring the performance of 
grazing deer 
 
NIR prediction equations:   Showers (1997) developed equations based on faecal NIR 
spectra to monitor the nutritional status of deer.  He obtained equations which predicted 
dietary protein (R2 = 0.94, b = 0.905, SEP = 0.87 %, bias = -0.5 %), phosphorus (R2 = 0.91, b 
= 0.93, SEP = 0.02 %, bias = 0 %) and digestible OM (R2 = 0.85, b = 0.89, SEP = 2.89 %, 
bias = -2.2 %).  Tests of the stability of these equations when applied to different geographical 
and animal species showed that the protein and digestible OM could be applied to mule deer 
as well as white-tailed deer, and in several different localities in Texas and Oregon. 
 
 
Faecal sampling methods:   Faecal samples must be representative of the mass of faeces 
voided by the animals under test.  The questions which must be addressed here are that the 
samples (1) encompass the full range of animal responses, (2) provide information on the 
range of animal responses range, (3) accurately predict the mean response, and (4) are free 
from bias associated with the time of sample collection.  It is probable that the first 
requirement is situation-specific, and sampling regimes must be devised and tested for each of 
these.  The second and third requirements can be obtained by analysing each individual 
sample and calculating the mean and a measure of dispersion.  Analytical economy can be 
obtained by compositing (pooling) all samples and conducting a single analysis. Although 
NIR spectroscopy is rapid and simple, commercial analyses can be quite expensive and the 
economies allowed by sample pooling may be worthwhile.  Jenks, et al (1989) demonstrated 
with white tailed deer faeces that pooling a number of samples gave the same mean value as 
analysing each sample separately, provided that each sample was represented equally in the 
pooled material.  They pooled between 12 and 19 samples collected at each of 4 localities, 
and the standard error of the mean of the 4 localities was a good estimate of the standard error 
calculated from analysing all samples individually.  Osborn and Jenks (1998) also reported 
similar means and standard errors for faecal N and P contents obtained from analyses of 
pooled and individual samples.  It may be important for farmers to know the range of animal 
responses as well as the mean.  The data reported by Jenks, et al (1989) suggest that pooling 
samples within paddocks would give a satisfactory estimation of both the mean and the 
standard error for a response, provided that the animals and pastures were similar.  Lyons, et 
al (1993) observed a treatment × day × sampling hour interaction when they predicted diet 
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protein and digestible OM contents by NIRS.  This shows that faecal samples should be 
collected over several different days and composited before they are sent for analysis.   
 
Deer faecal pellets resist weathering.    Even when  exposed to temperatures between 2 and     
31 oC, and rainfall of up to 5 mm on half of the test days (although covered against most of 
the rain), whole faecal pellets which remained had N, ADF and NDF contents after 24 days 
which were not significantly different from concentrations determined immediately after 
voiding (Jenks, et al 1990).  Leite and Stuth (1994) reported a similar stability in diet protein 
and digestible OM contents predicted by NIR spectroscopy from goat faeces which were 
exposed for up to 7 days (but protected from rainfall) in winter, spring and summer 
(temperatures 2 to 24, 3 to 29, 23 to 36 oC, respectively). 
 
The factors which will influence the apparent composition of faecal samples are sampling 
technique (i.e. obtaining a representative sample), sample stability during delivery to the 
laboratory (i.e. elapsed time and method of preservation during delivery), and sample water 
content and particle size. 
 
Pearce, et al (1993) showed that predictions of cattle diet protein and digestible OM contents 
remained stable for up to 12 days of sample storage, and the changes (positive in the case of 
predicted diet protein, negative for DOM) although statistically significant, were small (5 and 
1 %, respectively).  On the other hand, Coates (unpublished, cited in Coates 1998) found that 
the NIR predictions may change when samples are transported for long periods under tropical 
conditions. 
 
Post-receival processing may not be important provided that the ultimate particle size and 
water content are standardised.  However, if water content is not standardised, e.g. by 
allowing rehydration through exposure to ambient humidity (e.g. Baker, et al 1994), 
predictions of diet protein and IVDMD fluctuate widely.  Lyons and Stuth (1991) recorded 
increases in predicted diet protein and IVDMD contents of 47 and 7 % respectively.  These 
variations are clearly biologically as well as statistically significant. 
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6. Conclusions and Recommendations 
 
NIR has been used over the last forty years to analyse accurately (i.e. with standard errors of 
prediction not more than twice the laboratory standard errors of reference methods) protein, 
cell wall constituents, and other organic components in animal foods.  It is rapid, non-
destructive, and non-polluting. 
 
NIR spectral information can not be used to determine analyte concentrations directly because 
of the way in which near infrared radiation passes into, through, and is reflected from, the 
sample.  Rather, analyte concentrations, or other characteristics of the sample, are predicted 
from relationships which have been developed between reflectance and reference data, i.e. 
from prediction equations. Robust prediction equations are based on calibration data sets 
which encompass the range of sample characteristics expected to be encountered when the 
equation is used. Appropriate mathematical techniques (e.g. smoothing and derivatisation) 
should be used, and the samples must be uniform in particle size and water content.  
 
 “Universal” equations have been developed to predict the nutrient composition of a wide 
range of foods of that type.  There are several examples of European universal equations for 
grains and forages, and an equation for Australian mixed temperate pasture.  It may be 
necessary to calculate “local corrections” before universal equations are used in any new 
context. 
 
When properly calibrated, NIR spectroscopy predicts protein contents with great accuracy. 
Other constituents are predicted less precisely, although the standard errors of prediction are 
similar to the standard errors of duplicate laboratory determinations.  NIR spectroscopy is 
used successfully with both concentrate and forage foods. NIR information is obtained from 
the interactions of near infrared radiation with chemical bonds between non-mineral elements 
and so does not always accurately predict food mineral contents.  NIR methods predict in 
vitro digestibility accurately and precisely, and can predict in vivo digestibility at least as well 
as conventional “wet chemistry” methods such as in vitro digestion or the pepsin-cellulase 
method, and much more rapidly.  DM intake can also be predicted, although with less 
precision than chemical composition or digestibility.  
 
Faecal indices have been used to monitor the nutritional status of grazing animals, and have 
been often used to monitor wild deer in North America.  Faecal indices determined by wet 
chemistry have given mixed success, but substantially better results have been obtained with 
NIR spectroscopy.  NIR spectroscopy may measure characteristics of faeces which integrate 
several different aspects of faecal chemistry, while wet chemical analyses focus on single 
entities. 
. 
NIR technology has been used to routinely monitor (through analysis of faecal samples) the 
nutritional status of cattle, and appears to have potential for identifying tick infestation, 
pregnancy, gender and animal species.   Nutritional status data obtained by NIR analysis of 
grazing cattle faeces is used as an input to the NUTBAL Pro expert system for North 
American ranchers.  The combination of NIR analysis and nutritional profiling with the 
NUTBAL Pro program has improved yearly economic returns to American cattle ranchers by 
up to USD26.50 per cow mated.  These results, the preliminary evidence from similar 
attempts in northern Australia, and preliminary results of a NIR-based nutritional profiling 
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program for deer in Texas, suggest that a similar technology could be developed to monitor 
the nutritional status of deer herds and predict the performance of farmed deer. 
 
Recommendation: NIR spectroscopy should be developed as a tool for the Australian deer 
farming industry.  This should include development of methods to rapidly analyse deer foods 
and for faecal profiling.  An NIR-based nutritional expert system should be developed to give 
information which is timely and relevant to individual deer farms.  
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